If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+3g-88=0
a = 1; b = 3; c = -88;
Δ = b2-4ac
Δ = 32-4·1·(-88)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-19}{2*1}=\frac{-22}{2} =-11 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+19}{2*1}=\frac{16}{2} =8 $
| -5x+7=3x-17 | | x-6=2x-28 | | 4x+3=2x+9 | | 8(x-5)=8x-15 | | 6(x+2)=6x+10 | | |2x-7|+4=15 | | x-7=-3(x-2) | | -0.6(1-5v)=5.4 | | 8x–22=14–4x | | 5(x-3)=2(x+5) | | 3(x-3)=3x-5 | | 3(x-5)=3x-10 | | 9(x-3)=9x-5 | | 22.6=c+7.5 | | 22.5=c-7.5 | | 9(x-7)=9x-14 | | 3(7-x)+5(5-4)=9 | | 16-5y|3=2 | | 2(t+3)+3(t-4)=3(t-9)-7(6+t) | | 2(t+3)(t-4)=3(t-9)-7(6+t) | | (3x+4)^2-7(3x+4)=0 | | -21x+3x^2+16=28 | | 5+2x5+4/2=17 | | -21x+(3x+4)^2-28=0 | | -21x+(3x+4)^2=28 | | 2÷3x-3÷2x=x÷4-13÷12 | | 5z-1/3=1 | | y+1.5=0.25 | | 1/2x+1/3=-1/2x | | 4(i+3)=20 | | 2c-6+5c=0 | | x^2−3x-10=0 |